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Risk analysis provides methods for using data to
predict the probabilities of various consequences for
different choices or policies under uncertainty. Risk
management typically encourages the selection of
options with high expected utility and low expected
regret, when these can be identified, although it is
now well understood that real people deviate system-
atically and predictably from such recommendations
in many risk management settings. Might machines
do better? Could artificial intelligence and opera-
tions research optimization algorithms confronted
with realistically noisy and imperfect data and in-
complete understanding of how actions affect out-
comes nonetheless produce high-quality decision rec-
ommendations? If so, what performance guarantees
could be attached to them, and how complex would
the required algorithms be? What lessons might hu-
man decisionmakers learn from the most successful
of these algorithms that might be applied to daily
life? These questions are addressed in the highly
readable popular book Algorithms to Live By: The
Computer Science of Human Decisions, by Brian
Christian and Tom Griffiths (Henry Holt and Com-
pany, New York, 2016). The answers shed valuable,
and often surprising, light on how uncertainty can
simplify decision making and make otherwise com-
putationally intractable decision problems easier to
solve. They show how human judgment, priority set-
ting, forecasting, and behaviors can be improved—
meaning spending less time and effort to achieve bet-
ter results on average—by adopting principles used
in computer science to improve the performance of
computers and networks.

The book consists of an introduction, 11 chap-
ters, and a conclusion. The introduction explains that
“there is a particular set of problems that all peo-
ple face, problems that are a direct result of the fact
that our lives are carried out in finite space and time.
What should we do, and leave undone, in a day or in
a decade? What degree of mess should we embrace—
and how much order is excessive? What balance
between new experiences and favored ones makes
for the most fulfilling life? These might seem like

problems unique to humans; they’re not. For more
than half a century, computer scientists have been
grappling with, and in many cases solving, the equiv-
alents of these everyday dilemmas.” The rest of the
book explores how lessons from operations research
and computer science can be used to improve re-
sponses to such challenges in everyday life, recog-
nizing that “tackling real-world tasks requires being
comfortable with chance, trading off time with accu-
racy, and using approximations.”

A sense of its contents can be gleaned by sam-
pling some of the main insights from each chapter, as
follows.

Chapter 1: Optimal Stopping. Suppose that one
is searching for a rare prize—perhaps a good park-
ing spot in a long line of cars, a best offer or can-
didate or opportunity in a sequence with qualitative
or quantitative assessment of their values, or a drug
lead to select for further development. When should
one stop searching and commit to the current oppor-
tunity? In many cases, simple decision rules exist for
optimizing when to accept a current candidate, op-
portunity, or offer vs. rejecting it in hopes of find-
ing a better one. One famous rule for maximizing
the probability of selecting the best of a known num-
ber of candidates is to examine the first 37% of the
candidate pool and then accept the next candidate
that is better than any of them. If quantitative eval-
uations are possible and the distribution of values is
known, then the expected value of the selected op-
portunity can be maximized by accepting the first one
greater than a threshold value, where the value of the
threshold declines with the number of remaining can-
didates or opportunities. There is evidence that most
people stop too soon in such problems and could in-
crease their average rewards by searching somewhat
longer.

Chapter 2: Explore/Exploit. When should a clin-
ical trial of a new drug or treatment be suspended
because enough evidence has accumulated to con-
clude that it is more effective (or less effective) than
the incumbent? How much A/B testing should Inter-
net companies do before committing to one version
rather than another of a website or advertisement?
How often should we revisit favorite restaurants
that usually provide good experiences versus try-
ing new ones that might prove substantially better
or substantially worse? When should animals stop
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foraging in one spot and try another? More generally,
how should one allocate time or effort between ex-
ploring new activities or opportunities with uncer-
tain rewards and exploiting ones that, to date, ap-
pear to have the best reward distributions? Chapter
2 examines the solutions to such “multiarm bandit”
decision problems and summarizes recent advances.
It presents the important principle of optimism
in the face of uncertainty, which prescribes always
choosing next the activity with the highest upper con-
fidence bound (UCB) for its uncertain rewards, given
all the results of all the trials of different choices
made so far. This UCB algorithm delivers approxi-
mately optimal decisions in the sense that the differ-
ence between the expected cumulative rewards that
could have been achieved with perfect information
about reward distributions and the expected cumu-
lative rewards actually achieved (called the regret)
grows only logarithmically, that is, about as much in
the first 10 tries as in the next 90, or as in the next
900 after that. No decision algorithm can achieve
lower growth in regret. Without the guidance of such
algorithms, most people tend to overexplore in ex-
perimental settings, sampling different options for
too long, rejecting inferior choices and homing in on
the best ones too slowly, and therefore accumulating
unnecessary regret. The authors suggest that explo-
ration in youth and exploitation in old age may be
a practical implication of UCB-type algorithms for
helping to lead a minimum-regret life.

Chapter 3: Sorting. Sometimes, finding the best
of a set of options by some criterion is not enough:
one also wants to know the second-best, the third-
best, and the entire rank-order of the different
choices. Practical tasks and technology that depend
on efficient sorting algorithms range from Google
searches that present the few most relevant (top-
ranked) webpages in response to a user query to
efficient routing and distribution of mail or pack-
ages to reshelving library books returned at ran-
dom times. More intriguingly, establishing domi-
nance hierarchies in human or animal groups and
designing tournament ladders or other competition
structures in sports can be viewed in terms of effi-
cient sorting based on a minimal number of com-
parisons. Chapter 3 surveys sorting algorithms that
are well known to computer scientists, from the
obvious but inefficient bubble sort based on re-
peated pairwise exchanges to merge sort, which
actually achieves the theoretically optimal scal-
ing behavior of taking computer time proportional
to nlog(n) to sort n items—far faster than bubble sort

for large lists. The authors point out a fundamental
tradeoff between time spent sorting now and time
spent searching or retrieving later and suggest that
people and organizations often tolerate less messi-
ness than is optimal, spending precious time orga-
nizing e-mail files or other items that will rarely be
searched and for which searching would in any case
take less time than sorting.

Chapter 4: Caching. Computers, organizations,
and individuals must manage the risks of mov-
ing items from more-accessible locations to less-
accessible locations (such as a to a relatively slow
hard drive instead of much faster RAM) when there
are too many to items for them all to be kept in the
most accessible location and when the time at which
an item will next be needed is uncertain. Various
plausible-sounding strategies have been proposed for
deciding what to keep at hand and what to move to
longer-term storage, such as first-in, first-out (FIFO),
which evicts the oldest item first when something
must be cleared from the most-accessible locations
to make room for new items. A simple heuristic that
is hard to beat in general for this type of decision
making under uncertainty is the least-recently used
(LRU) heuristic. This evicts from readily accessible
locations whichever item has gone the longest with-
out being retrieved. How long it has been since we
last needed to use a resource is often the most practi-
cal predictor of how long it will be until we will need
it again, at least in contexts where the more recently
an item has been used, the more likely it is to be
used soon again. This principle applies in many con-
texts outside of computer science. Amazon uses the
LRU principle to proactively ship items that have re-
cently been popular in a region to a warehouse in
that region, anticipating that items that have been
demanded recently are likely to be demanded again
soon. This is part of how data on recent usage (or
recent deliveries, for Amazon) can be used to adap-
tively position scarce resources at locations where
they are most likely to be needed, thus reducing ser-
vice or delivery times and minimizing risks of slow or
late deliveries.

Chapter 5: Scheduling. Many risk analysts work
under conditions where there seems always to be
more work to be done than resources available to
do it quickly. A long list of Superfund sites to be
addressed or of chemicals to be scrutinized under
REACH or similar regulatory programs provides a
constant backlog of problems that can keep available
resources fully occupied addressing them. Under
such conditions, how should the limited person-hours



Book Review 1203

available be allocated most effectively to maximize
the value of the resulting flow of benefits from sites
remediated, chemicals investigated, or other tasks
completed? The answer depends on exactly what
one’s goals are. To minimize the maximum lateness
of any task on a list with desired deadlines, one
should always work next on the task with the earli-
est due date. But to minimize the average comple-
tion time per task, one should instead work next on
the task with the shortest time to completion—the
shortest processing time (SPT) rule. If there is time
pressure because some sites are deteriorating, and
if the goal is to minimize the number of sites that
deteriorate past some threshold level, then a proce-
dure called Moore’s Algorithm should be followed;
this identifies and skips the sites that would consume
so many resources that many other sites would then
deteriorate unacceptably. For many purposes, allo-
cating available effort to maximize a simple crite-
rion, expected benefit received per unit of time spent
(or “bang for the buck,” in more colloquial terms),
will make the most productive use of scare resources.
There is evidence that animals allocate their foraging
or hunting time according to this rule.

Interestingly, slight changes in the exact goal that
one is trying to achieve, such as allocating resources
to minimize the number of sites that deteriorate to
an unacceptable level versus allocating them to min-
imize the sum of quantitative damages done by such
sites, can turn the allocation from one that is easy to
solve to one for which there is no efficient solution al-
gorithm. Most known resource-scheduling problems
(about 90%) cannot be solved by any computation-
ally tractable algorithms if there is perfect informa-
tion about what needs to be done by when. The
various principles that work well for simple prob-
lems, such as the SPT rule, then become the basis
for heuristics that may be the best that can be done
in practice. Remarkably, these simple rules may be-
come optimal, or close to it, when there is uncertainty
about what will need to be done by when due to ran-
domly arriving additional tasks such as newly identi-
fied sites to inspect or chemicals to be screened. Un-
certainty turns simple prioritization rules, especially
the principle of always working next on the avail-
able task with the greatest ratio of expected bene-
fit achieved per person-hour spent, into formulas for
adaptively allocating time as new tasks or opportuni-
ties arise at random. They can be optimal, or nearly
so, for deciding how to allocate time to tasks under
uncertainty to maximize the value of the flow of ben-
efits produced, even if no computationally tractable

procedure exists that would be optimal or nearly
optimal if all tasks and deadlines were known in
advance.

Chapter 6: Bayes’s Rule. Suppose that we want to
predict some uncertain quantity—how much longer a
drought will last, how much longer a sick friend will
live, how much money a new movie will make, or how
many more terms a politician will remain in office—
based on the evidence provided by the value that
the uncertain quantity has reached so far—how long
the drought has already lasted, how much money the
movie has already grossed, how long the friend has
already lived since diagnosis, how long the politician
has already been in office. Bayesian inference treats
all uncertain quantities as random variables and con-
ditions the original (“prior”) distribution for any un-
certain quantity on the available evidence to obtain
an updated (“posterior”) distribution for predict-
ing its value. Quantitatively, as the authors explain,
Bayes’s Rule “gives a remarkably straightforward so-
lution to the problem of how to combine preexisting
beliefs with observed evidence: multiply their prob-
abilities together.” This often leads to simple, useful
rules for estimating and predicting uncertain quanti-
ties and for updating the results as new data become
available. For example, if a bus has been late on x of
the past n occasions, then the probability that it will
be late next time can be estimated as (x + 1)/(n + 2)
(“Laplace’s Law”). Because they write for a general
audience, Christian and Griffiths do not detail all of
the assumptions behind such simple rules (e.g., uni-
form prior, binomial sampling, stationary distribu-
tion, use of the mean of the beta posterior as a pre-
dictor), but they motivate and explain the key results
and their supporting ideas succinctly and well. For
forecasting, they note three main types of underlying
prior distributions for the time until an event occurs:
power law, normal, or Erlang. These imply three dif-
ferent types of forecasting rules. Power-law (“scale-
free”) distributions lead to multiplicative forecasts.
For example, the longer one has been waiting in a
call queue to speak to a customer service represen-
tative, the longer the remaining wait is expected to
be: expected remaining time increases in proportion
to the time already spent. Normal (or other single-
peaked) prior distributions for waiting time imply
that the average time is a good basis for prediction
and expected remaining wait decreases with time al-
ready spent. Exponential waiting times imply that the
expected remaining wait is constant no matter how
much time has already elapsed, perhaps justifying
repeated claims (spaced more than 5 minutes apart)
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that “I just need 5 minutes more!” from someone try-
ing to finish a task.

Drawing in part on their own research, the au-
thors note that people are often excellent intuitive
forecasters, giving estimates for remaining waiting
times very close to those from Bayes’s Rule, but only
if they understand the prior distribution accurately:
“Good predictions require good priors.” With good
priors, even a small amount of data, as little as a sin-
gle observation, can often be used to obtain accurate
forecasts. Without them, our expectations and expe-
riences will often conflict. The authors note that ex-
posure to news media reports can greatly distort be-
liefs about risks and their base rates and that being
a good intuitive Bayesian—a person whose expec-
tations generally match real-world outcomes—may
require protecting our experience-based priors from
such distortions.

Chapter 7: Overfitting. When can decision mak-
ing under uncertainty be improved by ignoring avail-
able information? Bayesian decision theory suggests
that conditioning on more information can never re-
duce the quality of a decision—in principle, informa-
tion never has negative value—but both psychology
and machine learning teach a different lesson. People
and statistical algorithms are prone to pay too much
attention to irrelevant details that distract from the
key factors that drive outcomes. This leads to “over-
fitting,” i.e., construction of overly elaborate models
that describe details of past data better than simpler
ones but that have less predictive power because they
do not generalize well. The advent of big data feeds
this tendency as researchers look for patterns in data
without always understanding the underlying data-
generating processes well enough to know which pat-
terns can be generalized to future situations. For-
tunately, machine learning algorithms can be made
to avoid overfitting by penalizing model complexity.
In addition, hold-out samples can be used to assess
and improve the out-of-sample performance of al-
gorithms trained on a subset of the data. The au-
thors suggest that such cross-validation might also be
useful is human schools and organizations to reduce
training-to-the-test or optimizing only what is mea-
sured rather than what is intended.

Psychologically, the literature on “fast, frugal
heuristics” shows that simple rules of thumb often
outperform more complicated approaches to deci-
sion making in the real world. For example, to pre-
dict the probability that someone played basketball
in college, one might start by asking whether height
is more or less that six feet; the answer to that sin-

gle question already provides useful information for
discriminating between people who are more likely
and less likely to be basketball players. Conditioning
on the answers to a handful of such simple questions
often provides predictions that are about as accurate
as possible based on the data and that are more ro-
bust and accurate than those from more complex sta-
tistical models that include many more factors. At
the intersection of human and machine decision mak-
ing is an Occam’s razor-like principle: focusing on
the few most important factors that drive outcomes
and using simple, robust if-then rules to interpret
them can simplify the construction and improve the
performance of data-driven prediction and decision
rules.

Chapter 8: Relaxation. The theme that simpler
can be better for decision making can also be ap-
plied in a different way: rather than solving a very
difficult combinatorial optimization problem to de-
cide how best to allocate scare resources to accom-
plish a task in the presence of multiple constraints,
it may be possible to solve a simplified version of
the problem in which one or more constraints is re-
moved (or “relaxed”) and then tweak the solution a
little, for example, by rounding fractional answers to
the nearest whole number to decide how many dis-
crete units of a resource to allocate. Solving modified
problems with relaxed constraints often yields an ap-
proximate solution to the original problem. Some re-
laxation techniques even provide performance guar-
antees that the solution obtained from the simplified
problem will not be worse (e.g., more costly or time
consuming) than the true but hard-to-find optimal so-
lution to the original problem by more than a known
amount. Confronted with a difficult or computation-
ally intractable decision problem such as how to allo-
cate spare parts or other costly resources to optimize
the performance (e.g., net benefit per unit time) of a
complex reliability system, a decisionmaker may be
able to use relaxation to decide when a good enough
solution has been found. Since the optimized value
for the original problem with all constraints enforced
can never be better than the optimized value for a
relaxed problem with some constraints removed, one
can stop searching for a better solution to the origi-
nal problem if the value for the best solution discov-
ered so far is close to the value for the exact solution
to the relaxed problem. Further improvement efforts
cannot produce further benefits larger than the gap
between the value of the current best known solu-
tion and the value of the exact solution to the relaxed
problem.
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Chapter 9: Randomness. A different strategy for
solving computationally difficult or impossible deci-
sion optimization problems to any desired degree of
precision is to use randomized algorithms. For ex-
ample, Monte Carlo simulation makes short work
of estimating expected values with as much preci-
sion as desired, even if the distribution being sam-
pled from is complex. It can be applied to model
the probabilistic behavior and performance of a com-
plex system operating in a complicated and uncer-
tain environment under different risk management
policies, provided that the relevant uncertainties are
understood well enough to be simulated by sampling
from known distributions and then computing func-
tions of the sampled values. Randomized algorithms
such as simulated annealing, even more than relax-
ation, allow practical nearly-optimal solutions to be
discovered to challenging discrete optimization prob-
lems such as resource allocation decision problems in
which the number of possible decision alternatives is
far too large to allow each one to be evaluated. As
the authors explain: “A close examination of random
samples can be one of the most effective means of
making sense of something too complex to be com-
prehended directly. When it comes to handling a
qualitatively unmanageable problem, something so
thorny and complicated that it can’t be digested
whole—solitaire or atomic fission, primality testing
or public policy—sampling offers one of the sim-
plest, and also the best, ways of cutting through the
difficulties.”

Chapter 10: Networking. Chapter 10 asks how
people and computers can coordinate their messages
and acknowledgments and adjust their expectations
and use of shared resources to enable reliable
communications over networks of failure-prone
and unreliable components. It explains two main
technical principles, exponential backoff and ad-
ditive increase, multiplicative decrease (AIMD),
originally developed for routing packets reliably
through telecommunications networks even when no
sender knows how much network capacity others will
need, or when. In this distributed control context,
exponential backoff refers to each sender doubling
the expected time to retry a transmission whenever
a conflict is encountered. Actual retransmit times
are uniformly distributed between one period and
a maximum time that is doubled after each failure
because randomization helps to make conflicts
less likely. AIMD refers to a policy of ramping up
a sender’s transmission rates of packets quickly,
doubling the rate at each time step and cutting back

by half as soon as a conflict occurs because a conflict
signals that another user is seeking to share the
available capacity; thereafter, the transmission rate
is increased by only one extra packet per period
(“additive increase”) as long as no conflict occurs,
but is halved (“multiplicative decrease”) whenever
a conflict occurs. A key reason that the Internet
functions as well as it does without centralized
control is that AIMD is built into the transmission
control protocol for packet-switched networks. But
Christian and Griffiths see many opportunities to
apply these principles beyond the confines of
telecommunications networks. They note that in
human relationships as well as in societal punish-
ment of criminal behavior, we tend to give unreliable
persons—ones who do not reliably reply to in-
vitations or who repeatedly violate the terms of
probation—a certain number of chances and then
give up on them, perhaps dropping an unreliable
friend or imprisoning a probationer: “Three strikes
and you’re out!” Exponential backoff suggests an al-
ternative, described by the authors as “finite patience
and infinite mercy,” in which the time between suc-
cessive invitations or the amount of jail time for each
probation violation starts small and is successively
(and predictably) increased if no answer is received
or if another probation violation occurs. In practice,
a five-year study of such a program in Hawaii found
that probationers treated with this protocol were half
as likely as regular probationers to be arrested for
a new crime or to have their probations revoked; 17
states have subsequently adopted similar programs.
Ant colonies and foraging animals use AIMD-like
strategies in which success is met with ramp-up and
failure with cut-back. As the authors state: “More
broadly, AIMD suggests an approach to the many
places in life where we struggle to allocate limited
resources in uncertain and fluctuating conditions,”
helping to make the most efficient use of available
resources while managing uncertainty about their
availability and performance.

Chapter 11: Game Theory. The final chapter ex-
amines problems of coordination and conflict from
the perspective of incentives, information, and com-
putational complexity. It begins with the striking
thesis that core concepts such as Nash equilibria
that provide the intellectual foundation for much
of modern economics, political economy, and game
theory have little or no practical value for predict-
ing behaviors when there is no effective way to
compute them—as is often the case. Enumeration
and inspection of all possibilities suffices to identify
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pure-strategy equilibria, if there are any, in simple
games where each player has only a few possible ac-
tions. But no effective algorithms exist for finding
Nash equilibria of general games, for determining
which specific actions should be used in those equilib-
ria, or even for determining whether there are multi-
ple equilibria. Such computational limitations chal-
lenge the practical applicability of many theoretical
results based on the assumption that all participants
in a game will play Nash equilibrium strategies.

Christian and Griffiths see such computational
limitations as challenging the very concept and
definitions of rationality conventionally used in eco-
nomics and in decision and risk analysis: a strat-
egy or decision rule that maximizes expected util-
ity cannot be considered the rational thing to do if
there is no practical way to compute it with the time
and resources available for decision making. In such
cases, the fast frugal heuristics discussed in Chapter 7
may become the closest practicable approximation to
rational behavior that real people can hope for.
Chapter 11 also discusses the problem of “informa-
tion cascades” in highly connected societies where
the decisions of bidders in an auction, speculators
in a stock market, or bettors in a prediction mar-
ket swiftly flow into public information that may af-
fect the beliefs and decisions of others, leading to
collectively harmful bubbles and false expectations
emerging from self-reinforcing feedback loops be-
tween public information and private decisions.

More constructively, Chapter 11 describes how
game theory has been used to quantify the “price
of anarchy” in systems where many participants
interact. This is the ratio of (a) the value of a perfor-
mance metric such as average cost or average wait-
ing time per person when each participant individu-
ally decides what to do; to (b) the value of the same
metric if a well-informed beneficent centralized con-
troller coordinates their activities. For some impor-
tant real-world applications such as traffic congestion
during rush hour, the price of anarchy turns out to
be only 4/3, implying that even if a centralized plan-
ner were to direct the movements of each vehicle
(as might become possible in a future of self-driving
cars), the average time for a commute could not be
reduced by more than 25%. On the other hand, there
are many situations, including those with Prisoner’s
Dilemma or Tragedy of the Commons incentives,
where the price of anarchy is very high: the outcome
when people act according to the incentives of the
situation leads to bad outcomes for everyone. The
potential for collective gains from centralized coor-

dination and control by law, regulation, custom, reli-
gious authority, moral imperatives, executive edicts,
or other mechanisms is correspondingly high in such
situations, providing a strong rationale for govern-
ment or other institutions and interventions.

Alternatively, game theory has been used to cre-
ate algorithms for (re)designing incentive systems
(called “mechanisms”) to make the price of anarchy
as small as possible. The authors suggest that per-
haps emotions—from the helpless “irrational” rage
that emboldens a small person or animal to attack a
larger one that invades its rights or territory to the
love that binds families or the solidarity that engen-
ders acts of selfless altruism and courage in groups
and communities—result from evolutionary mecha-
nism design: changing the incentives felt in certain
situations subordinates self-seeking to acts promot-
ing group coordination, cohesion, and survival.

The book ends with a brief conclusion that en-
courages “computational kindness” in the design of
systems and the conduct of daily affairs—that is, ap-
plying design principles, communications, and behav-
iors that make it easy for others to compute what is
best to do in each situation. This concept is beauti-
fully explained by the example of designing parking
garages as spirals that take drivers further and fur-
ther from the entrance. In contrast to other designs,
this one makes the optimal search and stopping rule
trivial to compute: drive until the first empty spot is
encountered and then take it. Empirically, any ex-
tra time spent walking because of this design is more
than compensated by savings in time spent searching.

Algorithms to Live By is a book of well-explained
big ideas with important applications. Many of both
the ideas and their applications are derived from
highly technical literatures in machine learning, com-
puter science, operations research, and telecommu-
nications engineering. The authors aspire to make
these ideas accessible to a wide public of nonspe-
cialist readers, and in this they succeed admirably.
The prose is lively and engaging throughout, every
key concept is illustrated with real-world examples,
and the constant interpretation of principles in terms
of applications in everyday life makes them under-
standable and vividly reveals their practical impor-
tance. Along the way, the reader is treated to tales
of the early days of the company that became IBM,
whose card-sorting machine was predicted in 1890 to
have very little profit potential; of physicians strug-
gling to decide whether a new life-saving treatment
really improved the survival of infants with respira-
tory failure (it did, but that finding took tragically
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long to become established convincingly in the age
before adaptive trials based on multiarm bandit al-
gorithms); and of a variety of other intriguing and
instructive innovations and their inventors. These
memorably demonstrate not only the importance
and power of better ideas for securing better out-
comes in an uncertain world, but also the challenges
of introducing innovations into established systems
that are not yet looking for better ways to accomplish
their daily operations.

Algorithms to Live By would make fascinating
and worthwhile supplemental reading for a variety
of undergraduate and graduate courses in statistics,
operations research, computer science, applied prob-
ability, decision analysis, and risk analysis. Although
aimed at a general audience, it is backed by over 50
pages of notes and close to another 20 pages of bib-
liography, with many notes and references address-
ing the primary research literature. Its broad scope
makes it stimulating even for more technical audi-
ences. Moreover, the book makes a valuable con-
tribution by challenging and expanding traditional
concepts of rationality to take account of compu-
tational effort. In doing so, it adds precision and
detail to earlier notions of bounded rationality by
illustrating with concrete algorithmic examples how

solution quality, computational time, and certainty
must be traded off against each other in solving real-
world decision problems.

This computational view of rational decision
making under real-world constraints of uncertainty
and complexity is expressed well in the book’s con-
clusion, as follows: “The intuitive standard for ratio-
nal decision-making is carefully considering all avail-
able options and picking the best one . . . [But] life
is just too complicated for that. In almost every do-
main we’ve considered, we have seen how the more
real-world factors we consider—whether it’s having
incomplete information when interviewing job appli-
cants, dealing with a changing world when trying to
resolve the explore/exploit dilemma, or having cer-
tain tasks depend on others when we’re trying to get
things done—the more likely we are to end up in a
situation where finding the perfect solution takes un-
reasonably long. And indeed, people are almost al-
ways confronting what computer science regards as
the hard cases. Up against such hard cases, effec-
tive algorithms make assumptions, show a bias to-
ward simpler solutions, trade off the costs of error
against the costs of delay, and take chances. These
aren’t the concessions we make when we can’t be ra-
tional. They’re what being rational means.”
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